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Overview

Today, we’ll try to deepen our understanding of the traffic
assignment problem from the perspective of game theory

▶ (Re)familiarize with classical game theory concepts and
discuss applications in transportation problems

▶ A recap on the concept of user equilibrium

▶ We will study a class of games in game theory closely related
to transportation economics

▶ A quick skim of different variants of equilibria in
transportation modeling
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Introduction

▶ Game theory is one of the most important tools of economics
▶ Players make a choice or multiple choices between actions
▶ Their outcome (or pay-off) is not only based on their own

decision, but also on that of other players
▶ Players have preferences over outcomes

▶ Games differ in many aspects
▶ Timing. When and how many times player make decisions?
▶ Observations. Can players observe each other’s choices?
▶ Uncertainty. Do some players have information that the others

do not?

▶ Main question: What is my optimal decision, given the
decision of my opponents (or expectations)?
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Examples

Cuban missile crisis in October 1962 1,2 :
▶ USSR: maintaining (M) or withdrawing (W) their missiles
▶ USA: an air strike (A) or a simple naval blockade (B)
▶ (AM) would result in a nuclear war, (BW) in a compromise

and the other two in a victory for either one of them

1
Brams, Steven J. ”Game theory and the Cuban missile crisis.” Plus Magazine 1 (2001)

2
http://users.humboldt.edu/ogayle/hist111/CubanMissileCrisis.html
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Introduction

▶ Transportation is heavily influenced by interactions of
individuals among each other, as well as between individuals
and operators
▶ Drivers, passengers, pedestrians
▶ Ride-hailing platforms
▶ Transportation management authorities

▶ Based on whether agents know others’ decisions before
making their decisions:
▶ Simultaneous game

▶ Prisoner’s Dilemma
▶ Rock-Paper-Scissors

▶ Sequential game
▶ Chess
▶ Auction

▶ Main question: What is my optimal decision, given the
decision of my opponents (or expectations)?
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Simultaneous game

▶ We begin by looking into games with two players
▶ Both agents make rational decisions
▶ Both agents have to decide at the same time
▶ They do not know what their opponent will choose, but they

do know their own payoffs and the payoffs of their opponent in
every scenario

▶ The most common way to represent (2-player) simultaneous
move games is in a matrix form.
▶ The “cell” that emerges is the outcome of the game.
▶ Traditionally, the first entry in a cell represents the payoff of

the row player, and the second entry is the payoff of the
column player.
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Simultaneous game

▶ Example: Ride-pooling
▶ A driver offers a trip to two individuals for 5 CHF
▶ If an individual is open to share her ride, she receives a

discount of 1 CHF
▶ If both individuals share, they perceive inconvenience from a

detour, worth 2 CHF
▶ Nash Equilibrium: A situation where no player can improve

their outcome by changing their strategy alone, given the
strategies of the others

▶ Pure strategy Nash Equilibrium: No player randomizes his/her
decision

▶ Two pure strategy Nash Equilibria (NE)

Share Not Share

Share (6, 6) (4, 5)

Not Share (5, 4) (5, 5)

Table: Cost matrix for the ride-pooling game

7/50



Simultaneous game

▶ Example: Ride-pooling
▶ What if the discount is 3 CHF?

▶ This leads to a single NE: (Share, Share)

Share Not Share
Share (4, 4) (2, 5)

Not Share (5, 2) (5, 5)

▶ What if the discounts are 2 CHF for A and 3 CHF for B if
both share, 1 CHF for A and 0 CHF for B if either A or B does
not share, and 0 CHF for A and 1 CHF for B if neither A nor B
shares?

Share Not Share
Share (5, 4) (4, 5)

Not Share (4, 5) (5, 4)

▶ This leads to no PSNE
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Simultaneous game

▶ Mixed Strategy Nash Equilibrium: At least one player
randomizes his/her decision

Share (p) Not Share (1- p)

Share (p) (5, 4) (4, 5)

Not Share (1 - p) (4, 5) (5, 4)

▶ Player A is indifferent (and therefore willing to randomize) if
player B shares with probability 0.5

▶ Note that the game is symmetric, so the same reasoning
applies to player B

▶ Mixed Strategy Nash Equilibrium: ((0.5,0.5), (0.5,0.5))
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Duopoly competition

▶ Classical competition model (19th century) where firms
choose quantities/prices, and prices/quantities are determined
through market movements (introduced by Prof de Palma in
the first lecture)
▶ Cournot competition: both companies choose their quantities

simultaneously
▶ Bertrand competition: both companies choose their prices

simultaneously

▶ Example: Competition of Uber (1) and Lyft (2)
▶ Demand for ride-hailing vehicles has the following inverse

demand function: P = 5− 0.01(q1 + q2)
▶ P is the price of ride-hailing trips
▶ q1 and q2 are the total numbers of vehicles deployed by Uber

and Lyft, respectively

▶ Both firms have marginal costs of deploying vehicles equal to 3
per demand unit

▶ Question: What is the equilibrium number of vehicles Uber
and Lyft will dispatch?
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Duopoly competition

▶ Cournot: choosing quantities simultaneously
▶ Splitting the inverse demand function for the two firms gives:

P = 5− 0.01(q1 + q2)

▶ The revenue for firm one is then as follows:

pq1 = 5q1 − 0.01q21 − 0.01q1q2

▶ At optimality, MR = MC, yielding

3 = 5− 0.02q1 − 0.01q2

▶ Here we note symmetry in the cost/profit functions of the two
firms, which allows to solve for both variables

3 = 5− 0.02q1 − 0.01q2

▶ q1 = q2 = 66.66,P = 3.66
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Duopoly competition

▶ Bertrand: choosing prices simultaneously
▶ A firm has no profit if their price is higher than the price of its

competitor, therefore a firm will always decrease its price
▶ This can continue until the price is equal to the marginal cost,

so:
p1 = p2 = 3

▶ Q = 200 such that q1 = q2 = 100

▶ Which one is more realistic?
▶ If capacity and output are difficult to adjust − > Cournot
▶ Example: Flights in busy seasons are set far in advance, when

they determine their quantity (=plane capacity * flights)
▶ If capacity and output can be changed easily − > Bertrand
▶ Example: price of bottled water in supermarkets
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Sequential game

▶ In some situations, a simultaneous game where all agents
decide at the same time may not be realistic
▶ For many interactions between an operator and a customer,

their decisions are made sequentially
▶ Competition between competitors can also be sequential

▶ Example: New ride-hailing competition
▶ In a city, Uber has been the sole ride-hailing company up to

now.
▶ Lyft is thinking about joining the market in this city
▶ As a response, Uber can lower their fares to enhance

competition
▶ In this example, Uber first decides, and Lyft responds

thereafter
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Sequential game

▶ Stackelberg competition: Player 1 chooses first, Player 2
observes this decision and makes a decision afterwards

▶ Example: Uber has more power and decides first, and Lyft
follows
▶ Recall: P = 5− 0.01(q1 + q2)
▶ For Lyft, the optimal quantity is q2 = 100− 0.5q1, see

Cournot for derivation of their Best response!
▶ Insert this in the revenue function of Uber:
▶ pq1 = 5q1 − 0.01q21 − 0.01q1q2 = 4q1 − 0.005q21
▶ At optimality, MR = MC, yielding: 3 = 4–0.01q1
▶ This gives q1 = 100 and q2 = 50
▶ Price = 3.5
▶ Profit Uber: 50, Profit Lyft: 25
▶ In Cournot, Profit Uber: 44, Profit Lyft: 44
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Games with many players

So far, we have introduced some typical games in transportation

▶ Two or multiple players

▶ Companies, drivers, passengers ....

In practice, the number of players can be large.

▶ A typical example is transportation planning
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Urban transportation planning

Urban transportation planning is traditionally carried out using a
four-step method:

Trip Generation

Trip Distribution

Mode Choice

Route Choice (Traffic Assignment)
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Urban transportation planning

1. Trip generation: the total number of trips made to and from
each zone

2. Trip distribution: the total number of trips between
origin-destination (OD) pairs

3. Mode choices. the number of trips will be made by car, bus,
bike, etc., between each OD pair

4. Route choice, or traffic assignment, involves assigning
travelers to different paths

▶ Originally developed in the 1950s and 1960s when planning
major highway facilities
▶ This model is not without its limitations, and alternative

paradigms have been suggested. Nevertheless, it remains
common in practice.

▶ In this lecture, we focus on the fourth step
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Road network representation

Consider a directed network G = (V ,E ), where V and E are the
set of nodes and links, respectively.
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Sioux Falls Test Network 
 
Prepared by Hai Yang and Meng Qiang, Hong Kong University of Science and Technology 

Adopted from the GitHub
repository
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Travel demand

Let Z ∈ V 2 denote the set of OD pairs

▶ The demand between an OD pair z ∈ Z is represented by dz
▶ Example: the red dot is the demand from node 2 to node 7
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Path flow

Let Pz denote the set of paths between OD pair z ∈ Z .

▶ Each path p is a sequence of links e ∈ E

▶ Set P = ∪z∈ZPz

Let fp denote the flow on path p ∈ P.

▶ The number of travelers using path p

Let f denote the vector of all path flows fp.

▶ f is feasible iff the following conditions are satisfied:

1. fp ≥ 0, for all p ∈ P
2.

∑
p∈PZ

fp = dz for all z ∈ Z

▶ Paths used in transportation networks are usually acyclic
▶ A network is acyclic if there are no cyclic paths in the network.

▶ We use the words ’route’ and ’path’ interchangeably
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Link flow

Link flows can be determined from path flows.
▶ The traffic flow on link e ∈ E is

xe =
∑
p∈P

δpe fp

δpe =

{
0 if link e is not part of p,

1 otherwise     
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Figure: An example of OD matrix in the Sioux-Falls network
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Congestion

Each link e ∈ E has a travel time function te(xe)

The travel time function captures congestion effects.

▶ te(xe) is non-negative and non-decreasing

▶ The functions te varies with links e

▶ A widely used one: Bureau of Public Roads (BPR) function

te(xe) = t0e

(
1 + α

(
xe
Ce

)β
)
, where Ce is the link capacity

Adopted from Saric, A., Albinovic, S., Dzebo, S., Pozder, M. (2019)
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User equilibrium

A path flow pattern f is a user equilibrium (UE) iff,

▶ for any path p ∈ P with fp > 0, there does not exist a path
p′ ∈ P such that ∑

e∈p′
te (xe) <

∑
e∈p

te (xe) .

▶ No user can reduce the individual travel time by unilaterally
changing his/her route choices

▶ For each OD pair, all used paths between them have equal and
minimal travel time.

▶ This is simply the Nash equilibrium of the large-population
game where no individual’s route choice affects overall traffic.

▶ Proposed by John Glen Wardrop in 1952 and therefore often
termed as Wardrop equilibrium
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Example of two paths

We can use the definition to solve for equilibrium on simple
networks.

▶ If there are 30 vehicles choosing these paths, how many
choose the red and the blue paths, respectively?

50

40 + x

o d

▶ 10 choose the red path, and the rest choose the blue path
▶ Both paths have a travel time of 50 minutes.

▶ What if there are only 9 vehicles choosing these paths?
▶ All drivers choose the red path
▶ The blue path has a higher travel time
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System optimum

Two possible traffic assignment rules:

▶ User equilibrium (UE): A feasible assignment in which all used
paths have equal and minimal travel times.

▶ System optimum (SO): A feasible assignment that minimizes
the total travel time

min
∑
e∈E

te(xe)xe

s.t. xe −
∑
p∈P

δepfp = 0 ∀e ∈ E

∑
p∈Pz

fp = dz ∀z ∈ Z

fp ≥ 0 ∀p ∈ P
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SO in the example of two paths

▶ If there are 30 vehicles choosing these paths and the total
travel time is minimized, how many choose the red and the
blue paths, respectively?

50

40 + x

o d

▶ 5 choose the red path, and the rest choose the blue path
▶ The red path has a travel time of 45 minutes, while the blue

path has a travel time of 50 minutes

Price of anarchy (POA): the ratio between the total travel times at
UE and SO, respectively

▶ The total travel time at SO is 45× 5 + 50× 25 = 1475

▶ The total travel time at UE is 50× 30 = 1500

▶ POA = 1500/1474

The “invisible hand” functions well in this case.
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How to find UE

At this point, there are three important questions you might be
asking at this point:

▶ Does a user equilibrium solution always exist?

▶ If so, is the user equilibrium solution unique?

▶ Is there any practical way to find an equilibrium in general
networks?
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Congestion Games

A congestion game is defined by a tuple (J,E ,P, t), where:

1. A set of players (drivers) J

2. A set of facilities (links) E

3. For each player j , a set of actions (paths) Pj . Each action
(path) pj ∈ Pj represents a subset of the facilities (links) :
pj ⊆ E .

4. For each facility (link) e ∈ E , a cost function te : N→ R≥0.

Player costs are then defined as follows.

▶ For action profile p = (pj)j∈J , define xe(p) = |{j : e ∈ pj}| to
be the number of players using facility (link) e. Then the cost
(travel time) of player (driver) j is:

cj(p) =
∑
e∈pj

te(xe(p))
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Best response dynamics

Consider the following iterations:

1. Players (drivers) start playing arbitrary actions (paths).

2. In arbitrary order, players take turns changing their actions if
doing so can lower their individual cost.

3. Stop until no one can lower their individual cost ...

If best response dynamics stops, it admits a pure strategy Nash
equilibrium.

But will the iteration process ever stop?

▶ For example, the game of Rock Paper Scissors never stops.

The answer is yes.

▶ Best response dynamics (BRD) always halt in congestion
games.

Why?
29/50



Best response dynamics

▶ By definition, in each round of BRD, if player j switches from
pj to qj ∈ Pj , play j ’s cost must be reduced, i.e.,

cj(qj , p−j)− cj(pj , p−j)

=
∑

e∈qj\pj

te(xe(p) + 1)−
∑

e∈pj\qj

te(xe(p)) < 0

▶ Consider the function ϕ : P → R:

ϕ(p) =
∑
e∈E

xe(p)∑
k=1

te(k)

We call the function ϕ(·) as a potential function (Note:
ϕ(p) is not the total cost )

How does ϕ change in each round of BRD?
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Potential game

The change of ϕ is the same as that in play (driver) j ’s cost !

ϕ(p) =
∑
e∈E

xe(p)∑
k=1

te(k)

▶ If player j switches from action (path) pj to qj ∈ Pj ,

ϕ(qj , p−j)− ϕ(pj , p−j)

=
∑

e∈qj\pj

tj(xe(p) + 1)−
∑

e∈pj\qj

te(xe(p))

=cj(qj , q−j)− cj(pj , p−j)

▶ The value of ϕ will get smaller by iterations

▶ ϕ can take on only finitely many values, and therefore BRD
will stop eventually

Thus, we assert that the best response dynamics always halt in
congestion games
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Potential game

Formally, a function ϕ : P → R is a potential function if for all
j ∈ J, p ∈ P, and qj ∈ Pj :

ϕ(qj , p−j)− ϕ(pj , p−j) = cj(qj , q−j)− cj(pj , p−j)

▶ A game is a potential game if it admits a potential function

Theorem
Every finite potential game has a pure strategy Nash Equilibrium
(PSNE)

Proof:

▶ Consider a action profiles p under which ϕ is minimal.

▶ By definition, no player can benefit by deviating from using a
pure strategy.

▶ Hence, p must be a PSNE.
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Congestion game and traffic assignment

But if we utilize the BRD iteration, it takes exponential time to
find the equilibrium.

▶ Not practical in traffic assignments with a large population

Then, how do we conduct traffic assignment in practice?
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Non-atomic congestion game

Now, we consider a continuum of drivers that are infinitesimally
small. Still, we have

▶ The set of congestible facilities (links) E remains the same.

▶ For each facility (link) e ∈ E , a cost function te : N→ R≥0.

Now we consider the set of types of players Z

▶ Plays of the same type share the same origin and destination

▶ The amount of players of type z is dz .
▶ Each type z of players to distribute fractionally over their

action(path) set Pz

▶ Let fp represent the amount of players using action p.∑
p∈PZ

fp = dz

Recall the user equilibrium model ...
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Potential function

A path flow f is a Nash Equilibrium iff for any action (path) p ∈ P
with fp > 0, there does not exist a path p′ ∈ P such that∑

e∈p′
te (xe) <

∑
e∈p

te (xe) .

The non-atomic analogue of the potential function from atomic
games:

ϕ(p) =
∑
e∈E

xe(p)∑
k=1

te(k)

⇕

ϕ(f ) =
∑
e∈E

∫ xe(f )

0
te(y)dy

▶ A player’s strategy choice does not affect the delays

Similar to the atomic case, a minima of this function is a Nash
Equilibrium.
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Beckmann formulation

Using the potential function of the non-atomic game, the
equilibrium solves the following convex optimization program:

min
∑
e∈E

∫ xe

0
te(y)dy

s.t. xe −
∑
p∈P

δepfp = 0 ∀e ∈ E

∑
p∈Pz

fp = dz ∀z ∈ Z

fp ≥ 0 ∀p ∈ P
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Optimality conditions of convex optimization

Consider the following general optimization problem.

min
x∈Rn

f (x)

s.t. hi (x) ≤ 0, i = 1, . . .m

gj(x) = 0, j = 1, . . . r

The Karush-Kuhn-Tucker conditions or KKT conditions are:

▶ 0 = ∇f (x) +
∑m

i=1 ui∇hi (x) +
∑r

j=1 vj∇gj(x)
▶ ui · hi (x) = 0 for all i

▶ hi (x) ≤ 0, gj(x) = 0 for all i , j

▶ ui ≥ 0 for all i

KKT conditions are sufficient and necessary for the optimality of
convex optimization programs
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Optimality conditions

By writing the KKT, the optimality condition of the Beckmann
formulation is given by

fp ≥ 0 ∀p ∈ P

cp − κz ≥ 0 ∀z ∈ Z

fp(cp − κz) = 0 ∀p ∈ P∑
p∈Pz

fp = dz ∀z ∈ Z

▶ The second condition shows that κz is the shortest path travel
time for OD pair z

▶ The third condition shows that if a path is used (fp > 0) its
travel time must be equal to κz

▶ The last condition is the flow conservation condition

These are exactly the definitions of user equilibrium
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Uniqueness of link flow

Claim: The equilibrium solution is unique in link flows
x = (xe)e∈E .

▶ The potential function is strictly convex in the link flows x if
the link performance functions are increasing.

▶ The convexity of the potential function regarding link flows is
shown by writing the Hessian
▶ Recall

ϕ =
∑
e∈E

∫ xe

0

te(y)dy

▶ The first derivative ∂ϕ/∂xe = te(xe)

▶ The second partial derivative ∂2ϕ
∂xe∂xe′

= t ′e(xe), if e = e′,,

Otherwise, ∂2ϕ
∂xe∂xe′

= 0.
▶ What does the Hessian of ϕ look like?
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Algorithm

▶ The Hessian is a diagonal matrix, and its diagonal entries are
strictly positive if t ′e(xe) > 0.

The Hessian Matrix looks like:

∇2z(x) =


∂t1(x1)
∂x1

0 0 · · ·
0 ∂t1(x2)

∂x2
0 · · ·

0 0
. . .

...
... ∂tA(xA)

∂xA

 (1)

Thus, the solution regarding link flows is unique.
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Algorithm

ITERATIVE FRAMEWORK

1. Calculate
path travel times

2. Find shortest paths

3. Adjust path choices
toward equilibrium
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Algorithm

So, this suggests one specific implementation of the iterative
framework:

1. Start with some feasible link flow solution x .

2. Calculate the link travel times using the flows x .

3. Find the shortest paths between all origins and destinations.

4. Find the all-or-nothing link flows x∗ corresponding to these
shortest paths.

5. Choose λ ∈ [0, 1] and update x ← λx∗ + (1− λ)x

6. If “close enough to equilibrium” stop, otherwise return to step
2.
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Variants of user equilibrium

So far, we have found a way to characterize the standard user
equilibrium with Beckmann’s formulation.

There are many variants of UE that occurred during the past
decades:

▶ Elastic demand

▶ Link interactions

▶ Multiple classes of users ...

Can we always find a potential function?
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Link interactions

In practice, a link’s travel time may also be affected by other links’
flow

▶ Highways where overtaking is allowed

▶ Ramp metering

▶ Spillback

Travel time function is no longer te(xe) but te(x)

A natural question: can we just revise the Beckmann function in
some way to capture such interaction?

Φ =
∑
e∈E

∫ xe

0
te(y)dy
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Symmetric two-way link interactions

The simplest case of link interaction
▶ Pairwise relationships between the two (opposite direction)

links representing two-way streets.

Direction A (link e)

Direction B (link e’)

▶ Consider link e and anther link e ′∈ E in the opposite direction

▶ The travel times on links e and e′ are given by

te = te(xe , xe′), te′ = te′(xe′ , xe)

▶ Symmetric interaction

∂te
∂xe′

=
∂te′

∂xe
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Symmetric two-way link interactions

ϕ =
1

2

∑
e∈E

∫ xe

0
[te(y , xe′) + te(y , 0)] dy

Two terms in the integral:
▶ First term: the flow in the opposite direction is held constant.
▶ Second term: the flow on the opposite link is held at zero.

We can verify that,

∂ϕ

∂xe
= te(xe , xe′)

Thus, we still have the optimality conditions from KKT:

fp ≥ 0 ∀p ∈ P

cp − κz ≥ 0 ∀z ∈ Z

fp(cp − κz) = 0 ∀p ∈ P∑
p∈Pz

fp = dz ∀z ∈ Z
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Toll design

▶ Understand the toll design problem as a Stakelberg game
▶ Two-level decision process:

▶ Leader: Sets tolls on links (e.g., government or system
planner).

▶ Followers: Travelers choose routes minimizing personal cost
(time + toll).

▶ Perfect information assumption: Followers observe leader’s
decision.

▶ Goal: Design tolls to induce socially optimal or user
equilibrium flow.

▶ Marginal cost pricing: If we charge each traveler a toll of
∂te(xe)
∂xe

when they pass link e
▶ the generalized link cost of link e is therefore

t̂e(xe) = te(xe) + xe
∂te(xe)

∂xe
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Marginal Cost Pricing and Beckmann’s Formulation

▶ We can replace te(xe) with t̂e(xe) in the Beckmann
formulation:

min
∑
e∈E

∫ xe

0
t̂e(y) dy

s.t. xe −
∑
p∈P

δepfp = 0 ∀e ∈ E

∑
p∈Pz

fp = dz ∀z ∈ Z

fp ≥ 0 ∀p ∈ P

⇔

min
∑
e∈E

te(xe)xe

s.t. xe −
∑
p∈P

δepfp = 0 ∀e ∈ E

∑
p∈Pz

fp = dz ∀z ∈ Z

fp ≥ 0 ∀p ∈ P

▶ Under the marginal cost pricing scheme, travelers make route
choices in a system optimal manner.

▶ Is the magical cost toll the only toll scheme that can achieve
system optimum?
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Thanks!

Zhenyu Yang

Urban Transport Systems Laboratory (LUTS)
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zhenyu.yang@epfl.ch
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